Attempted
Medium
Topics
Companies
Hint
You are given a positive integer n
representing the number of nodes of a Directed Acyclic Graph (DAG). The nodes are numbered from 0
to n - 1
(inclusive).
You are also given a 2D integer array edges
, where edges[i] = [fromi, toi]
denotes that there is a unidirectional edge from fromi
to toi
in the graph.
Return a list answer
, where answer[i]
is the list of ancestors of the ith
node, sorted in ascending order.
A node u
is an ancestor of another node v
if u
can reach v
via a set of edges.
Example 1:
Input: n = 8, edgeList = [[0,3],[0,4],[1,3],[2,4],[2,7],[3,5],[3,6],[3,7],[4,6]]
Output: [[],[],[],[0,1],[0,2],[0,1,3],[0,1,2,3,4],[0,1,2,3]]
Explanation:
The above diagram represents the input graph.
- Nodes 0, 1, and 2 do not have any ancestors.
- Node 3 has two ancestors 0 and 1.
- Node 4 has two ancestors 0 and 2.
- Node 5 has three ancestors 0, 1, and 3.
- Node 6 has five ancestors 0, 1, 2, 3, and 4.
- Node 7 has four ancestors 0, 1, 2, and 3.
Example 2:
Input: n = 5, edgeList = [[0,1],[0,2],[0,3],[0,4],[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]]
Output: [[],[0],[0,1],[0,1,2],[0,1,2,3]]
Explanation:
The above diagram represents the input graph.
- Node 0 does not have any ancestor.
- Node 1 has one ancestor 0.
- Node 2 has two ancestors 0 and 1.
- Node 3 has three ancestors 0, 1, and 2.
- Node 4 has four ancestors 0, 1, 2, and 3.
Constraints:
1 <= n <= 1000
0 <= edges.length <= min(2000, n * (n - 1) / 2)
edges[i].length == 2
0 <= fromi, toi <= n - 1
fromi != toi
- There are no duplicate edges.
- The graph is directed and acyclic.
class Solution {
/** Naive Thought & will not work */
public List<List<Integer>> _getAncestors(int n, int[][] edges) {
List<Set<Integer>> ans= new ArrayList<>();
for( int i=0; i<n ;i++){
ans.add(new TreeSet<>() );
}
for( int[] edge : edges){
ans.get(edge[1]).add( edge[0]);
for( int i : ans.get(edge[0])){
ans.get(edge[1]).add(i);
}
}
List<List<Integer>> finalAns= new ArrayList<>();
for( Set<Integer> set : ans){
List<Integer> member= new ArrayList<>();
for( int j: set) member.add(j);
finalAns.add(member);
}
return finalAns;
}
void dfs( List<List<Integer>> adjList, int currNode, Set<Integer> visited){
for( int nei : adjList.get(currNode) ){
dfs(adjList, nei, visited);
}
if(!visited.contains(currNode)) visited.add(currNode);
}
/** T : O(n×(n+e))+O(n^2l) S: O(n)*/
public List<List<Integer>> getAncestors( int n, int[][] edges){
/** construct the adjacency list by reversing the edges*/
List<List<Integer>> adjList= new ArrayList<>();
for( int i=0;i<n;i++) adjList.add( new ArrayList<>());
for( int[] edge : edges) adjList.get(edge[1]).add(edge[0]);
System.out.println(adjList);
List<List<Integer>> ans = new ArrayList<>();
/**perfrom dfs on the each edge & make list of all nodes in path */
for( int i=0; i< n; i++){
Set<Integer> visited= new HashSet<>();
dfs( adjList, i, visited);
List<Integer> ansistors=new ArrayList<>();
for( int j=0; j< n; j++){
if( visited.contains(j) && i!=j ) ansistors.add(j);
}
ans.add(ansistors);
}
return ans;
}
}